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Abstract

The algebraic expressions_for the reduced projection
operators " = Y"1 w,p; for the irreducible repre-
sentation (irrep) A of the icosahedral group I are found
by using the double-induced technique and eigenfunc-
tion method, where B; are the double-coset generators
of I with respect to the cyclic subgroup Cs. Simple
algebraic expressions are derived for the symmetry-
adapted functions (SAF’s) by applying the reduced
projection operators (" to Y. The SAF’s are
functions of the angular momentum /, the quantum
numbers A, pn of the group chain I D C; and the
multiplicity label 7. In this way, the SAF problem of the
group I is solved once for all instead of for one angular
momentum / each time.

1. Introduction

The icosahedral group is the most complicated mol-
ecular point group and has been the subject of many
studies (Speiser, 1937; Laporte, 1948; Cohan, 1958;
McLellian, 1961). The discovery of the quasicrystal and
the fullerence Cg has revived the interest in the group
(Hu et al., 1987, Liu et al., 1990; Chen & Ping, 1997,
Prandl et al., 1996). The symmetry-adapted functions
(SAF’s) of the icosahedral groups are important in
physical applications (see for example Prandl et al., 1996,
and references therein). In some cases, high-order SAF’s
are also required. Low-order SAF’s for the icosahedral
group are available in McLellian (1961) and Butler
(1981) (j =0,3.1,...,8), and in the papers by Laporte
(1948) and Michel (1992), Cohan (1958) and Elcoro et al.
(1994), with [, =10, 12 and 16, respectively. In
Altmann & Herzig (1994), the SAF’s of the group chain
1 D T D C, are tabulated for / up to 15 with 12 digits.
Except in Butler (1981), where a building-up proce-
dure is used, the conventional method for constructing
SAF’s is the projection-operator method. The con-
struction of the SAF’s for a high-symmetry group, such
as the octahedral group and icosahedral group, by
the projection-operator method is extremely difficult
(Halonen & Child, 1983; Herman, 1997). Recently,
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Prandl et al. (1996) proposed a recursive method for
constructing the SAF’s of the group I and totally
symmetric SAF’s are obtained for angular momentum /
up to 30. The extension of the recursive method to the
irreps other than the identity representation is possible
but it does not alleviate the difficulty of the original
projection-operator method to a substantial extent. It is
highly desirable to have algebraic expressions for the
SAF’s so that they can be obtained easily for any
angular momentum /.

Recently, by using the double-induced technique and
the eigenfunction method, algebraic solutions of the
tetrahedral group 7 have been found (Chen & Fan,
1998a,b). Simple algebraic expressions of the projection
operators (or irreducible symmetry operators), irre-
ducible matrices, SAF’s and Clebsch-Gordan (CG)
coefficients are derived for the group 7. The elegance
and simplicity of the results lie in the fact that the
projection operators, SAF’s and CG coefficients are
functions of only the quantum numbers of the group
chain [the analogy of (j,m) for the group chain
SO, D S0O,], without involving any irreducible matrix
elements. Another advantage is that the solutions for
both the single-valued and double-valued representa-
tions (reps) are obtained in a unified way.

In Chen & Fan (1998b), it is shown that, for
constructing the SAF’s and CG coefficients, the
projection operator can be replaced by the so-called
reduced projection operator (or effective irreducible
symmetry operator, as it was originally called), which is
extremely simple in structure, and enables us to obtain
algebraic instead of numerical expressions for the SAF’s
and CG coefficients of any molecular point group.

In this paper, we will apply the same method to the
icosahedral group. Although both single- and double-
valued reps can be obtained simultaneously, owing to
space limitations we will treat the single-valued case
only, while leaving the double-valued case to another
paper.

The outline of the paper is as follows: The Euler
angles for the icosahedral group are given in §2. The
double-induced technique is reviewed in §3, and the
reduced projection operator of the group [/ is introduced
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Table 1. The rotation axes of the group I

872

Csq Csa Css Csa
1" -1 2 =2 3 -3 4 -4
Gy G, Gss Gy
A126+ A236 A346 A456
Gse G, Csg G
vi24'% v235' V341 452
G G G Gy
16§ jr 45 35
Co G G G
25 23 46 56

+ A126 means an axis from the origin to the center of the triangle 126.
§ 16 is the axis from the origin to the midpoint of the line connecting 1 and 6.

124'.

in §4. The algebraic expressions for the reduced
projection operator are derived in §5. The irreducible
matrices of double-coset generators, the SAF’s and the
relation between the double-induced representation and
the symmetrized boson representation (Chen & Ping,
1997) are shown in §§6-8, respectively. The final section
is a Discussion and summary.

2. The Euler angles of the icosahedral group

The vertices of an icosahedron are labeled as in Fig. 1.
The vertices of the upper (lower) part are labeled
1-6(1'-6"). We use the same notation and ordering for
the symmetry axes and elements of the group [ as in
Chen & Ping (1997). The group [ has:

6

Fig. 1. The coordinate system and labels of the vertices for the I group,
with B, standing for the double-coset generators B,,i =2, ..., 4.

Css Cse

55 6 — 6

C3.5

A516

C3.10

513’

CZ.S C2<6 C2,7 C2<8
36 26 12 24
C2.13 C2.14 CZ,IS

15 13 34

+ v124’ means an axis from the origin to the center of the triangle

6 fivefold axes (joining the two opposite vertices),
Cpj=1,...,6;

10 threefold axes (joining the center of two opposite
faces), C3’j,j =1,...,10;

15 twofold axes (joining the midpoints of the opposite
edges), Gy j=1,...,15, as listed in Table 1. The
indices for the 60 elements are listed in Table 2.

The Euler angles of the 60 elements have been given
by Cohan (1958) and are valid only for single-valued
representations. To avoid the ambiguity in assigning the
Euler angles to each element of a double point group, a
new way of determining the Euler angles has been
proposed in Chen & Fan (1998a4). The Euler angles of
the 60 elements found in this way are given in Table 2.
With the FEuler angles and the rotation matrices
D'2(a, B, y) (Rose, 1957), the group table of the double
point group I™ has been constructed in Fan et al. (1999),
and is available upon request.

The main steps in Chen & Fan (1998a) for deriving
the algebraic expressions of a point group are summar-
ized in the next section, but now specified to the I D Cj
case.

3. The double-induced technique

The SAF is a linear combination of spherical harmonics
|Im) = Y,,,, which transforms as an irreducible basis of a
point group. A key for constructing the SAF’s is to find
the projection operator. The normalized projection
operator for the group chain 7 O Cj is defined as

_ 60
PO = (h,/60)2 3" D) (R,)R,, (1)

a=1

where A, is the dimension of the irrep A, D®(R,) is the
irreducible matrix of the element R, and p is the
quantum number of the cyclic group Cy generated from
Cs, = Cs4. Applying the projection operator Pﬁf)“ to
|lm), we can get the SAF’s v, = PV |l1m).
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Table 2. Euler angles of I'

Elements o B y Elements o

1 E 0 0 0 21 CE 0

2 Cse 0 0 2m/5 22 (&N 4m/5
3 Cs6 0 0 187/5 23 Cc3; 6m/5
4 Cs /5 wi 127/5 24 cz, 2m/5
5 Cs, 37/5 o 167/5 25 (&5 4m/5
6 Csy b4 w 16m/5 26 G, /5
7 C3, /5 w 2 27 C3, 3r/5
8 Css /5 3} 147/5 28 Cs¢ 0

9 Css /5 o 187/5 29 Cs6 4m/5
10 Cs 5 3r/5 w 187/5 30 C3, 0

11 Css /5 3} 127/5 31 Csy 6m/5
12 Cs, /5 w 0 32 Cs, 2m/5
13 Cs, T o 147/5 33 C3, 6m/5
14 Ci, 0 0 4m/5 34 Cs, 3m/5
15 Ccy 0 0 167/5 35 Cs, b4
16 Cc?, 0 T—w 3m/5 36 Cys /5
17 c3 2m/5 T—w 3 37 C3s /5
18 cz, 61/5 T—w 17r/5 38 Cig 8m/5
19 c 8m/5 T—w 9m/5 39 Csg 4m/5
20 Cis 8m/5 T 3m 40 Ciy 97/5

1 w=cos~1(1/5'2).

The double-induced technique is based on the
double-coset decomposition and the eigenfunction
method used for obtaining the analytic solutions of the
rotation group in the group chain SO(3) D SO(2). Recall
that the SO; D SO, projection operator

P = 12 +1)/87°]

x [sin pdedpdy D)) (afy) Rapy)  (2)

can be found by solving the following set of eigen-
equations (Eisenberg & Greiner, 1970; Chen, 1989)

W T TPy = LG + 1), m. P,

mm mm?

(2b)

where Jz is the projection of the angular momentum
along the intrinsic z axis (Bohr & Mottelson, 1969;
Eisenberg & Greiner, 1970) and the quantum numbers
m and m are referred to as the external and intrinsic
quantum numbers.

Now let us give the counterpart of equation (2b) for
the icosahedral group I. The 60 elements R, of I span the
group space with scalar product defined as

(R,IRy) = 84 (20)

In analogy with (2b), the projection operator Pff)’lcan
be found from the following set of eigenvalue equations
(Chen, 1989):

(C’ CSz’ 65z),PEj\)ﬁ = ()" /O,u’ :0;2)7)3)/;’ (Zd)

where C and Cs, are the CSCO (complete set of
commuting operators) of / and Cs. The CSCO of a finite
group G (Chen, 1989) is the analogy of the set of Casimir
operators of a Lie group, and whose eigenvalue, called
the quantum number of the group G, can uniquely label
the inequivalent irreps. The CSCO’s of most pure rota-
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B y Elements o B y
T—w 17m/5 41 Csy /5 0} 16m/5
T—w 197/5 42 Ciio 2m/5 T—w 17m/5
T—w 11m/5 43 Cs10 8m/5 T—w 137/5
T—w /5 44 C;, b4 1) 187/5
T—w 137/5 45 Gy, /5 0} 2
10} 2m/5 46 Gy, /5 10} 4m/5
1) 147/5 47 G, 0 b4 2m/5
T—w /5 48 Gy, 8m/5 T—w 177/5
T—w 3 49 Cyy 0 b4 16m/5
T—w 197/5 508 Cys b4 [3) 0
T—w 3 51 Cys 3m/5 10} 2m/5
T—w 197/5 52 Gy 2r/5 T—w 3n/5
T—w 137/5 53§ Cyg 0 b4 0
1) 0 54 Cyy 0 T 187/5
10} 12m/5 55 G0 4m/5 T—w /5
® 147/5 56 G /S 0] 187/5
10} 16m/5 57 G /5 0} 16m/5
T—w 117/5 58% Cyis 0 T—w b4
T—w 177/5 59 Gy 0 b4 4r/5
10} 8m/5 60 Cyis 61/5 T—w 197/5

§ The elements 50, 53, 58 are the coset generators B, B,, B;, respectively.

tion point groups consist of only a single class operator.
The CSCO of [ is

6
C=>[Cs;+C5], Cs; _CS‘/, 3)
j=1
which has five distinct eigenvalues
12, —8¢,, —8¢;, -3, 0O,

with
¢, =cos2um/5, ¢ = —(5'2 +1)/4,
¢y = (5" =1)/4,
corresponding to the five irreps, A, F;, F,, G, H, in

Mulliken notation, as shown in Table 3. The CSCO of C;

is Cs, with the eigenvalues
p = p, = exp(—2mui/5), =0,+1,£2. @)

The operator CSZ is the so-called intrinsic operator. A
general intrinsic operator R is defined in Chen (1989) by

RS =SR forany S €G. (5a)

Notice that (5a) is the defining equation for the intrinsic
operator R rather than an operator identity. Therefore,
R,R,R....R;=R,(R,R....R))=R,R,...R,R,.

(5b)
The set of operators (C, Cs,, CSz) is the analogy of
(CEVAVA)
The eigenvector of Cs, is the projection operator of
Cs,

P = kz (P (Cs)s Cs, = expl—Qa./S)i]. (6)
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Table 3. The eigenvalues (X, p) of (C, Cs)

p = exp(—2umi/5).

A F, F,
A 12 24572 252
w 0 1,0,-1) (2,0,-2)

The steps for finding the eigenvectors of (2d) by the
double-induced technique are as follows:

Step 1. Make the double coset decomposition of I with
respect to the subgroup Cs:

4 A A A A A
=3 Csp,Cs = Cs(B + B,) + Cs(Bs + B)Cs,  (Ta)
i=1
with the coset generators chosen as
:él =e, :éz = Cyg» B,% = Cyuss /§4 =Cys. (7b)

Let M; be the number of times an element appears in the
double coset CsB;Cs. It can be easily shown that

57
-

Step 2. Sandwiching the coset generators between
P* and P* gives us the simultaneous eigenvectors
¢, of Cs, and Cs, [due to (5a) and the fact that
P"C;Z = C,,P" = p;P"], which are orthonormal with
the scalar product deﬁned in (2¢).

i=1,2

i=3,4. ®)

$p=5"'MPPBP, i=1,2.3.4, (9
with
2 2
¢/1.;4 5/1.;4¢//.’ ¢;/./1 = 8;/.7/7.¢/L' (10)
The ¢uw i=1,2,3,4, form is called the double induced

representation, which is a representation of / induced
from the irrep (u, i) of the group Cs x Cs, where the
intrinsic group Cs is the group generated from Cs,.

To find the eigenvectors of the CSCO of I, we need
steps 3 and 4.

Step 3. Construct the representation matrix M of the
CSCO of the group [ in the double-induced repre-
sentation,

Mij(l"’? /j’) = /1,;1,|C|¢l/“1,> (11)

Step 4. The projection operators can be expressed as

PM)" Z uf)i i / (12a)

The coefficients u; = uﬁ ;Zu

following matrix equation:

are determined from the

M(pu, M)“(A) — xa™

Wit

(12b)

G H
-3 0
2.1,-1,-2) 2,1,0,-1,-2)
where  w={u,..., % }coumn are orthonormalized

column vectors.

Step 5. The determination of the phases of the
projection operators. For each multidimensional irrep A,
we first choose the phases for the SAF’s associated with
the lowest possible /, as shown in the first two rows of
Table 5. These SAF’s are necessarily multiplicity free
and they are associated with [ = 1, 2, 3 for the irreps F,,
H, F, and G. Then the phases of the projection opera-
tors are determined by the request that the projected
states Pm“ |Im) for the above lowest possible / have the
same phases as the SAF’s with the chosen phases.

4. The reduced projection operator

In the double-coset decomposition, elements R, of the
group I can be expressed as

R,=C.LBCL, s.t=0.1,....4,  (13a)

and the irreducible matrix elements can be factorized,

*) ()

D(R,) = p,d (B (13b)
where d('”(/él—) = _D(”(,Bl-) [in analogy with the rotation
matrix d&(8) = D'(0, B, 0)]. Substituting (13a) into (1)
and using

60 4
MY,

1 s,1=0

M»

a=1 i

the projection operator (1) can be written as
_ " -
p(k)u = (h,/60) / PMBOEZL)MPM’

Z M

From (9), (12a) and (14), we obtain the relation between
the eigenvectors u and irreducible matrices of the coset
generators,

(14a)

Pt = 14D (B B.. (14b)

(k)
Winp

= (5hy/12)"*M; d 0 (B (15)

The operator (" is called the reduced projection
operator. The SAF’s can be obtained by applying the
projection operator (14a) to |lm) = Y,; [the spherical
harmonics defined according to Rose (1957)]:

v = PP |l). (164)
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Using

4 .
PH|Im) = Y (0% p,) |Im) = 56, |im),
k=0

5 —{1’
wm 0.

where ©=m means y = m(mod?5), and ignoring the
irrelevant constant factor, we get

n=m

] (16b)
otherwise,

P iy = Y ZM (B (Bylim).
m= i, (17)

where Y means that the summation is subjected to the
condition m = .

Equation (17) shows that, acting on |/m), the projec-
tion operator ’P Yt can be replaced by the reduced
projection operator PP so long as we 1mpose the
magnetic quantum number conservation rules m = (1 for
the trial state |/m) and m = pu for the final state, which
are stipulated by the projection operators P* and P*,
respectively.

It is to be noted that the reduced projection operator
(14b) contains only 4 instead of 60 terms for the group I,
and thus is a drastic simplification of the usual form (1).
It is this fact that makes the projection-operator method
extremely simple and powerful once the reduced
projection operator is used.

) _
Vi =

5. The algebraic expression of the I O C; projection
operators

We now proceed to derive the algebraic expresion for
the projection operator following the steps in §3.

5.1. The I O Cs projection operator

According to (7b), (8) and (9), the four basis vectors
of the double-induced representation are

¢,z = [1/5(5)"*]P"eP", = [1/5(5)"*]P" C, 4P",
¢M-L = gP“CZ,,SP R ﬁ = ng‘CZ’SP", (18a)
= (1/57)pP ¢l =(1/5"5)P"C,5.  (18b)

It is seen that there are altogether 5 45 + 25 + 25 = 60
linearly independent basis vectors in (18), which is just
the order of the group 1.

Using the same procedure as detailed in Chen & Fan
(1998a) and the multiplication table of the group I in
Fan et al. (1999), from (3) and (18), we can find the
representation matrix M = M(u, i) of the CSCO in the
double-induced representation,

/ut

1/2
C[L aml 0 0 5 CZ;L 5;“2
1/2
M=2 12‘ 6;1 7 5 CZ/L(S/L—;I
0 57,8, 5yt it Cuan t CGui

Ca + Cu + Cu—p
(19)

12
5758, 0 ot T Capraz
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The eigenvectors of the matrix M will be obtained
separately in four cases:
Case (i). w = =0 (p=p=1). M is simplified as

2 0 01/2 2(5)"?
M= 8 2(52)“ 2 2(56) 2 (20a)
2(5)"2 0 4 6
The eigenvalues are found as
A=12, —8c,, —8¢; 0. (20b)
Solving the  homogeneous linear  equations

(M — AI)u = 0, we get the eigenvectors
A—6 5
Py’ =N, [qs}, + <—4 - )d)%

AZ—SA—83 A — ¢} 200)
C
8(5)1/2 00 2(5)1/2 00

Equation (20c) gives the algebraic expression of the
projection operators as a function of A. This expression
is very elegant if the quantum number A is used as the
irrep label. Unfortunately, people are not familiar with
this new labeling scheme, and it is more convenient to
change back to the Mulliken notation. From (205b), (20c¢)
and Table 3, we obtain the projection operators in a
more explicit but less compact form,

P = [1/(12)21(8h + 3 + 5250 + 520,

PW" Yo — d% — b3 + Bio).

””” = Loh — & + Bi — B0,

P(”"’ [1/(12)21(5' ¢4 + 523 — dy — dio)-
(20d)

Case (ii). = = %1, £2 (p = p # real). In this
case, the Inatrix M becomes three-dimensional. In the

basis ¢, ¢, and ¢}, ,,
¢, 0 5'2¢,,
M=2 0 2¢,+¢cy ¢, +1 (21a)
51/2C2u ¢, +1 2, +1
and its eigenvectors are
A—2¢,)(2¢c, +2
,PX\)H =N, ¢/1¢ ( )( ) ¢/3m
SU(02 + PRk — e, — 2c3,)
. A—2c, & (21b)
51/2(p/2L +,0}§2 wu |

The eigenvalue is found as A =0, —3, —8c,,. Substi-
tuting it into (21b), we obtain the projection operators,
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P = [1/(12)' 215" ), + 463,85, + 4 b1,

PLG)M:(1/31/2)[¢L+(_1)M¢3 — (=" W]

,PLFW\)M 1[ + (= 1)M2C“ i — (- 1)M262u W]
n==£1, £2. (21¢)

Case (iii). p = —pu = %1, £2 (p = p* # real). The
matrix M is again three dlmenswnal In the basis ¢?
»_, and ¢}

"

w?

c, 51/2c2 0
M=2 51/2c2M 2c, +1 ¢, +1 (22a)
0 c,+1 2¢c,+¢y,

The eigenvalues are the same as for case (ii), while the
eigenvectors are

)L—2cﬂ

M- 2
Pu " _N)‘|:¢”+51/2(,0*2+p2)
w w

(p?l,fll.
(A —2c )(ZCM +2) .
512(p22 + p2)(A — 4c, — 2cy,) P |

(22b)

The projection operators are
P = [1/(12) 15", + 4ci. ¢,
PO = (1318, — (19,
Pl ™ =Yl — (=1)"2¢,, 8}

+4CZM "= M)
+ (=D

o+ (=D 2,081
n==x1, £2. (22¢)

Case  (iv). p#—-p#p (p#p"#p). Now
¢' =¢* =0 and the double-induced representation

becomes two dimensional. In the basis (¢° ‘;‘tﬁ)’ the
matrix M is simplified as

M= 2|:CIJ— +Cli +CM+/1’

Coptop + Cau0ias

i
CZM+2;2 + C3M+2;2 (23[1)
¢, ‘ez +c, |

" Iz n—pt

which has nondegenerate eigenvalues in the following
cases:

0, (1 ) = (0, +1), (0, +2), (+1, +2),
A= _SCZM’ (/’L : la) = (0’ :l:l)’ (0’ :I:Z)a
23 () = (£, +2),

(23b)

Since the ranges of n and f are exactly the same, for
simplicity we always use the convention:
(2, ).

means (u, ) or

()
The eigenvectors of M are

A—2c, — 2 - —2c
fp(k)u N, |:¢ + “w

Ut ¢
2C2u+2u + 2C3u+2u

] (23¢)

Combining (23b) and (23c), we obtain the projection
operators

REDUCED PROJECTION OPERATORS

’P(H)M (1/21/2)(¢;4/L ll«ll)
P(me)# (1 /21/2)(¢W — W)
(i) =05, 0,22 3
PLH)M — (2/31/2)(% i 3 it Cuvi iﬁ)’
'PLG)” (2/31/2)(Cu+u i — Cu—it ;‘tﬁ)’
(p: p) = (£1, £2).

5.2. The I D Cs reduced projection operators

Substituting (18a) into (20d), §21_c), (22¢) and (23d),
we get the projection operators P);”" in terms of P*B,P".
By deleting the factor (h, /60)/2P*P~, we obtain the
following reduced projection operators

o =Le+ By) + By + B, (24a)
oy " = s(e — B,) — (1/5")(Bs — By,
(FI)IL 1/2 _
@M (2/5 )(C1ﬁ3 C2:34) — :|:1
{ @Efl) a 5:32 + (2/51/2)(%.3% - C154) . 7
o =(2/5)20,:(Bs — B, (w: @) = (0, £1),
(24b)
where 6, ; are one except 6, = 6, = —1.
90" =1L(e— By) + (1/57)(Bs — By).
pgj’jf_ge + g2/51/2)(c]2/§3 —ab)
Ou = _5132 + (AZ/S A)(C1,33 — 6B,
o = —(2/5)"2(Bs — B,). (n: ) = (0, £2),
(24¢)

P =te+ (15D B - B
P = (DTG ) — (1 (1/5)(Bs = B,

. on= +1, +2,
50;(46)“ = (2/51/2)9u;2(cu+ﬂ'33 — cﬂ_ﬂﬁ4_),
(n: ) = (£1, £2),
(244)
where 9 - = eﬂ,u are one except 0_, =6_, , = —1.

pEJH)U e+ Bz - l§3 - B4)7
Pl =1le+ %(C%H,BE + Ciﬁ4)7A .
K()LH)fu — (_1)Iu\[(% B,) + %(clzut% + C%Mﬂ4)]’

R =A:|:1, +2,
L@i/{{)ﬂ = (61/2/5)9//.11(/33 + ,34),
(D) = (0,%1), (0, £2),
p(H)M = 49m1,(cy,—;2/33 + Cu+/1:84)7
(2 p) = (1, £2),

(24e)

where 0,; =0;, = lexcept)_; =6_, =0_,_, = —L
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J ; 0
Ch 1
Ci-53 53
G, %) (0,0)
Cho 38 CL 58
Cs.s -50- C56 50
G, %) (2,0)
Cl 58 Ckg 7
Cl,-50.CE, 29
G, k) (4,0)
Cly-58-Ckg 20
Cl,-50-CE, 34

54
(0.1)
21
35
@1

39
(4.1)
43
51

Table 4. The elements of double cosets

2
14
49
(0.2)
30
13
(2.2)
36
22
(4.2)
19
27

3
15
59
(0.3)
28

6
(23)
57
55
(4.3)
38

5

It is seen that the reduced projection operators of the
group [ are only functions of the quantum numbers X (or
the irrep label), u and .

6. The I O (s irreducible matrices

The algebraic expressions of the reduced projection
operators are merely functions of the quantum numbers
A, i, i and thus are very concise, yet they contain
essentially all the information about the irreducible
matrix elements. For constructing the SAF’s a knowl-
edge of the reduced projection operators is sufficient.
However, if one needs to find the CG coefficients, a
knowledge of the irreducible matrices of the coset
generators is also required, which can be found in the
following way.

Since the operator Cs4 = Cs, is diagonalized in the
I D C; basis, its irreducible matrix is Dfm(cs,é) = 0,8,
On the other hand, according to (14b), the coefficients in
front of the coset generator B;,/M; in the reduced
projection operators are just the complex conjugate of
the matrix elements of B;. Therefore, from (24), we can
read off the irreducible matrices of the double coset
generator f3,, B35, B, directly.

pr 00
DF(Cs)=10 1 0 [,
L0 0 p
[0 0 1
D™@B)y=]0 -1 0|,
(1 0 0
[ —2¢, 2% 2¢, ] (232)
D(Fl)(BS):(l/Sl/Z) _ol/2 -1 9172 i
| 2¢, 27 —2¢ |
[ 2¢, 22 —2¢, ]
D(Fl)(&) — (1/51/2) 91/2 1 2172
| —2¢, 2" 2¢, |

4
3
47
(0,4) (1,0) (1,1)
16 17 2
44 45 1
2,4) (3,0) 3,1)
40 12 26
25 31 18
(44)
43
10
_,02 0
DP(Cs)=1| 0 1
L0 0 p,
0 0 -1
DP(By=|0 -1
| -1 0
[ 2c,
D" (By) = (1/5'7)| —2'2
[ 2¢
_—261
DBy =(1/57)| 2
| —2¢,
Rz
0
pUC =], "
’ 0 0 p,
L0 0 O
0 0 0
N 0 0 1
D@ —
(B) 0 1 0
L —1 0 0
-1
G h 12 2¢,
D™(B5) = (1/577)
—2¢;
|1
-1
G) (A 1/2 —2¢
D™ (B,) =(1/57)
2c,
-1
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(1.2) (1.3) (1.4)
32 24 52
8 41 56
(3.2) (3.3) (3:4)
46 37 9
60 23 33
e (25b)

1 _21/2 ,
=22 2¢,

212 —2¢,

—1 22

212 —2¢,

P
-1
0
0 b
0

2¢, —2¢ 1 7
-1 1 2¢;

1 -1 =2¢ |
2¢; —2c, 1
—2¢; 2¢, —1 7]

1 -1 —2c

-1 1 2¢,
—2¢, 2¢;, —1

E25c)
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D(H)(Cs,e) = {0, 01,1, p_y, IO—Z}diag7

D(H)(Bz) ={1,-1,1,-1, 1}antidiag’
[ 4 4c, 6'2  —dc, 4G ]
4e, 43 67 —4d 4,
D(H)(,§3) :% 612 g2 1 —6\2 g2 |,
—d4c, —43 —6'* 4G —4c
L 43 4, 67 —de, 42 |
[ 4z 4c, 67 —de, 4]
4c, 4c? 67 —4c3  A4c
D(H)(/§4) :% 612 g2 1 -6 62 |,
—4¢, —43 67 4 —4c,
L 42 4, 67 —de, 43 ]
(25d)

where ¢, = ¢4, ¢, = ¢; and c_, = ¢, are used.

It is shown in Chen & Fan (1998b) that to calculate
the CG coefficients with the reduced projection
operator only the irreducible matrices of the above
double-coset generators are required. If one needs the
irreducible matrices of other elements, they can be
obtained by the following simple formulas:

DU(CLoBo) = p'd)(B,),
DG)N(ChoBsCEQ) = pd ) (By)B"
DYN(CLBiCEe) = pda (B,

(26)

where p = p,. Using the group table of [ in Fan et al.
(1999), we can obtain the pair of indices (j, k) for each
element of I, as shown in Table 4.

Equations (25) and (26) give the algebraic expressions
for the irreducible matrix elements.

7. The I O C5 SAF’s
7.1. The algebraic expressions for the SAF’s

Now we derive the algebraic expressions for the
SAF’s, which are functions of the angular momentum /,
the quantum numbers A, ; and the multiplicity label 7.
To construct the SAF’s, for each irrep, we need only one
set of the reduced projection operators with a specific
intrinsic quantum number . The intrinsic quantum
number can be chosen according to convenience. For
example, from (24), it is seen that the projection
operators of the irreps F;, F, and H associated with
=0 are the simplest and can be chosen as the
projection operators, while for the irrep G we can
choose gJEf")’Z:l as the projection operator. In other
words, for constructing the SAF’s, only the following
projection operators are needed:

REDUCED PROJECTION OPERATORS

o =1+ B) + By + B,
o =Le— B+ (-1W/5)B - B o =12,
K)(FH)O — (—1)J+1(2/5)1/2(,33 — '84) u = =o,
PP = 1B, + (/51 (B, — B,
n==+l1, ,3_1 = ,321

(G)l (2/51/2)(6.14+1 133 l’—*l’é“)’ n = :|:2,
KD(()H)O te+ .32 .33 - ﬂ4)’

(H)O (61/2/5)(,33 + /34) n = =£1, £2.

(27)

Compared with the original form [equation (1)] of the
projection operator, the simplicity of (27) is quite
impressive.

To obtain the SAF’s, we also need to introduce the
coordinate system that is shown in Fig. 1. Using Rose’s
(1957) expression for the d.,.(B) and the Euler angles
for the coset generators listed in Table 2, we have

Bolimy = (—=1)""| — ),
B lim) = X exp(—imm)d () lim).

Bilim) = = X exp(=imm)d, ; (Bljm).

(28)

where B, = — B,, B, = cos~'(1/5)'/2.

Applying (27) to the trial state |lm), using (28) and
the magnetic quantum-number conservation rule, we
immediately obtain the I D Cs unnormalized SAF’s
YO = o7l

7.1.1. One-dimensional irreps.

YO = Jim) + (=) — )
+5 3 1"y (Bs) + (=1 "dy (B)]lim).
m=0

(29a)

where m = 0(mod>5).
7.1.2. Three-dimensional irreps.

(=Dl =) + (=1)7(5)"?
X 3 U1 (B) = (=1 Bu)lim).

3= (By) + (1) d (B)im),

m=pu

F,)m
E) )m: >

(Fo)m
‘/fu "= 90#

u = =o, (29b)

with 6,, = u and 1 for o =1 and 2, respectively, and

m = 0(mod 5).
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7.1.3. Four-dimensional irreps.

YO =iy — (5)'* Y [(—1)"d(Bs)

m=1

— (=1)"d0(Blim),
YO = (=) —m) + (5) Y [(—1)"d(By)

m=-—1
— (=1)"dS(Bim),
PO = 3 (1) 1 dli(B5)

m=pu

- (_1)mcu—1df/nrh(ﬂ4)]|lm>7 n==+2,
(29¢)

where m = 1 (mod 5).
7.1.4. Five-dimensional irreps.

Y = (lim) + (=D = )8,
+0, 3 (=1 "y (B5) + (=1 dy (B)Nlim),

m=y
(294d)

where m = 0 (mod 5), while 6, = —1 for 4 =0, —1 and

GM =1for u =1, 2.

7.2. The symmetry of the SAF’s

From (29) and  using the property of
d - (B)=(-1)""d",.(m—p) (Rose, 1957), we can
derive the following symmetries for the SAF’s:

(") = (=1 = mly )

)
(lm|1ﬁ§f1)'h) — (_1)l+m+#-+1<l _ mWSL)’h), nw=0,1,
(Im|yP™) = (=) —my™, p=0,2,
(Im|y O™y = (=) —my D, p=1,2,
(I = (=) —mlyp "™, w=0,1,2.
(30)

It is interesting to note that the symmetry of the SAF’s is
independent of the intrinsic quantum number 7.

7.3. The multiplicity problem

In (29), it is seen that the quantum m serves naturally
as the multiplicity label and the SAF’s are functions of
I, A, u and the multiplicity label m. The construction of
linearly independent SAF’s for the multiplicity not-free
case is troublesome in the conventional projection-
operator method or the recursive method (Prandl et al.,
1996). In Altmann & Herzig (1994), the SAF’s symmetry
adapted to the group chain / O T D C, are obtained by
using the conventional projection-operator method and
the multiplicity problem is solved numerically by using
the trial-and-error method, ie. by trying to use the
projection operators [which are denoted as W,’;p in
Altmann & Herzig (1994)] with different column index p
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and different trial state |/m) in each case. In contrast, we
chose a fixed ‘column’ index, i.e. the intrinsic quantum
number [, in the projection operator goff)‘z, which is zero
for all irrepss except for the irrep G, for which it =1
and the multiplicity label m are determined by the
magnetic quantum-number conservation rule 7 = [t and
the subduction rule from the irrep / of O; to the irrep A
of group 1. When an irrep A occurs only once in D!, m
may take any permissible value. The results with
different m differ at most by an overall phase. When the
irrep A occurs T times, we need to take t different values
for m. In general, the SAF’s ¥} with different 7, may
be neither orthogonal nor linearly independent. To find
numerical results from the algebraic expressions, the
multiplicity . for the occurrence of the irrep A of I in
the subduced representation / | A is calculated first by
using the character theory and is used as a control
parameter for the calculation. The linear independence
of the SAF’s ¥ with different /n is checked in each
step. No orthogonal procedure is included for keeping
the simplicity of the algebraic expressions of the SAF’s.

With the algebraic expressions, it is easy to find the
exact numerical expressions of the SAF’s wg)’;‘ for any /
with the help of some software, say the Maple software.
It takes only minutes to calculate the SAF’s with
[ =100. The code in Maple is available upon request.
Part of the SAF’s is listed in Table 5.

8. The relation between the double-induced
representation and the symmetrized boson
representation

The point-group symmetrized boson representation
(SBR) introduced by Chen & Ping (1997) is a powerful
technique for constructing algebraic expressions of the
symmetry-adapted basis and is particularly useful for
describing vibrations of large molecules and for high
overtones. The advantages of the SBR are that its basis
vectors have a clear physical picture and symmetry-
adapted bases for any concrete cases can be constructed
in algebraic form once for all for a given point group
without any projection procedure. However, the deri-
vation in Chen & Ping (1997) is rather involved. In this
section, we show that, using the algebraic expressions of
the single-valued projection operators, we can obtain
the results of Chen & Ping (1997) easily.

We begin with a brief review of the SBR. Let us
consider the stretching vibration of an icosahedral
molecule C,H;, with 7, = (I ® 7) symmetry, where 7 is
the inversion group. The 12 C—H bonds are indexed as
shown in Fig. 1. Since symmetry adaptation to the
inversion group is trivial, in the following we only
consider the group /. A state in which the bonds 1, 2, 3,
4,5,6,1,2',3 4 5,6 have respectively a, b, ¢, d, e, f, «,
B, v, 8, &, ¢ vibrational quanta is denoted by
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REDUCED PROJECTION OPERATORS

Table 5. The I D C5 SAF’s

The superscript is the multiplicity label.

I=1 m=0
=2 =0
I=3 =0
m=1
I=6 m=-5
1=8
m=-5
=0
1=9
m=-9
n=—4
I=11
m=—10
m=-5

[Fipw) = 1pu), w =0, £1

|F2) = —(2/5)' 713 = 3) + (3/5)'?[32),  |F,0) =130), |F, —2) = (3/5)"7[3 = 2) +(2/5)"*|33)

1G2) = (3/5)*3=3) +(2/5)°32), IG1) =31), [G—1)=3—1), |G—2)=(2/9"13—-2)—(3/5)"33)

|A) = (712/5)[6 — 5) — (11'/2/5)[60) — (7'/%/5)[65)

[H2)! = {(2 x 11 x 72 /[5(3 x 5)"*]}I8 — 8) + [19(13)"/2/2 x 525'2]|8 — 3) — [(11 x 13)/2/52(2 x 3 x 5)'/2]|82)
—{37 x 72 /[2 x 5*(3 x 5)'/21}|87)

\Hl) —[23(13)1/2 /523172118 — 4) — [(7 x 11 x 13)!/2/5%31/2]|81) — [(2 x 7)"/?/5%]|86)

|HO)' = (1/2/2)|8 — 5) — (1/2!/?)(85)

[H — 1) =[(2 x 7)"/2/52]|8 — 6) — [(7 x 11 x 13)"/2/5231/2]|8 — 1) + [23(13)"/2/5231/2]|84)

[H —2)' =[37 x 7/2/2 x 5%(3 x 5)"2]|8 — 7) — [(11 x 13)1/2/52(2 x 3 x 5)!/2]|8 — 2)

—[19(13)"%/2 x 5251/2]|s3> +[2 x 11 x 7'2/5%(3 x 5)1/2]|88)

|[H2)? = [(3 x 11 x 13)1/2/52512]18 — 8) + [2(7 x 11)"/2/5251/2]|8 — 3)
+[22(2 x 3 x 7)‘/2/5251/2]|82 ) 4 [2(3 x 11 x 13)1/2/5251/2]187)

[H1)2 = —[(3 x 7 x 11)!/2/52]|8 — 4) +[2 x 3 x 31/2/52]|81) 4+ [(2 x 11 x 13)'/2/5]|86)

|HO)* = |80>

|H — 1 = —[(2 x 11 x 13)"2/5?]18 — 6) +[2 x 3 x 3/2/52]|18 — 1) + [(3 x 7 x 11)1/2/5?]|84)

|H —2)? = —[2(3 x 11 x 13)1/2/5251/2“8 7) +[22(2 x 3 7)1/2/5251/2“8 —-2)

—[2(7 x 11)}/2/525!72]|83) + [(3 x 11 x 13)!/2/525/2]|88)

[G2)! = [29(2 x 3 x 61)!/2/3 x 52 x 61]|9 — 8) + [2(7 x 13 x 17 x 61)/2/5% x 61]|9 — 3)
—[24(3 x 13 x 17 x 61)"/2/3 x 52 x 61]|92) + [47(3 x 17 x 61)'/2/3 x 5% x 61]|97)

IGI)' =[(3 x 61)'/2/52]|9 — 9) —[2 x 7(2 x 3 x 7 x 17 x 61)'/2/3 x 5% x 61]|9 — 4)
+[(2 x 3 x 11 x 13 x 17 x 61)/2/3 x 5% x 61]|91) — [23 x 3(17 x 61)/2/52 x 61]|96)

|G —1)! =[2° x 3(17 x 61)"/2/52 x 61]|9 — 6) +[(2 x 3 x 11 x 13 x 17 x 61)"/2/3 x 5 x 61]|9 — 1)

+[2 X 7(2 x 3 x 7 x 17 x 61)/2/3 x 52 x 61]|94) + [(3 x 61)/2/5%]|99)
|G —2)' = —[47(3 x 17 x 61)"/2/3 x 52 x 61]|9 — 7) — [2*(3 x 13 x 17 x 61)/2/3 x 52 x 61]|9 — 2)
—[2(7 x 13 x 17 x 61)2/5% x 61]|93) + [29(2 x 3 x 61)/2/3 x 5% x 61]|98)

|G2)? = [22(2 x 3 x 7 x 17 x 409)"/2/3 x 5% x 409]|9 — 8) — [2 x 31(13 x 409)'/2/5 x 409]|9 — 3)
+[53(3 x 7 x 13 x 409)1/2 /3 x 52 x 409][92) — [2 x 113(3 x 7 x 409)"/2/3 x 5% x 409]|97)

|G1)? = —[2 x 7(3 x 7 x 17 x 409)/2/52 x 409]|9 — 9) + [(2 x 3 x 409)"/2/3 x 5%]|9 — 4)

—[2%(2 x 3 x 7 x 11 x 13 x 409)"/2/3 x 5% x 409]|91) + [67(7 x 409)"/2/5% x 409]|96)
|G — 1)> = —[67(7 x 409)'/2/52 x 409]|9 — 6) — [23(2 x 3 x 7 x 11 x 13 x 409)"/2/3 x 52 x 409]|9 — 1)
—[(2 x 3 x 409)12/3 x 52]|94) — [2 x 7(3 x 7 x 17 x 409)'/2/5? x 409]|99)

|G —2)? =[2 x 113(3 x 7 x 409)'/2/3 x 52 x 409]|9 — 7) +[53(3 x 7 x 13 x 409)!/2/3 x 5% x 409]|9 — 2)

+[2 x 31(13 x 409)1/2/57 x 409]193) + [22(2 x 3 x 7 x 17 x 409)"/2/3 x 5% x 409]|98)

[F,1)' = —[347(5 x T)/2/23 x 3 x 53|11 — 9) +[17(5 x 17 x 19)V/2/2% x 3 x 5°]|11 — 4)
—[2x3x5x7x13x17x19)"/2/2% x 3 x 5®][111) — [7(2 x 3 x 5 x 7 x 19)/2/2% x 5°]|116)
+[41(3 x 5 x 11)12/23 x 3 x 5]|1111)

|F,0)' = [2% x 3(3 x 5)Y2/5°]|11 —10) — [(2 x 5 x 7 x 17 x 19)/2/2% x 3 x 5°]|11 —5)

X[(5x7x 11 x 13 x 17 x 19)/2/22 x 3 x S*JJ110) +[(2 x 5 x 7 x 17 x 19)'/2/23 x 3 x 5*]|]115)
+[22 x 3(3 x 5)/2/5°]]11 10)
IF, —1)' =[41(3 x 5 x 11)/2/23 x 3 x |11 —11) +[7(2 x 3 x 5 x 7 x 19)"/2/23 x 5%]|11 — 6)
—[2x3x5x7x13x17x19)2/2% x 3 x 53]|11 — 1) — [17(5 x 17 x 19)/2/2? x 3 x 5°]|]114)
—[347(5 x 7)/2/2% x 3 x 5°]|119)

[F,1)2 = [3 x 47(5 x 17 x 19 x 3119)1/2/2 x 5% x 3119][11 — 9) + [2 x 43(5 x 7 x 3119)1/2/5% x 3119]|11 — 4)
H[32 x 41(2 x 3 x 5 x 13 x 3119)"/2/2 x 5% x 3119][111) — [353(2 x 3 x 5 x 17 x 3119)!/2/2 x 5° x 3119]|116)
+[11(3 X5 %7 x 11 x 17 x 19 x 3119)/2/2 x 5% x 3119]|1111)

|F,0)> = —[(3 x 5 x 7 x 17 x 19 x 3119)!/2/5% x 3119]|11 — 10) +[(2 x 5 x 3119)/2/2 x 5°]|11 —5)
+[2 x 3(5 x 11 x 13 x 3119)/2/5% x 3119]]110) — [(2 x 5 x 3119)1/2/2 x 5°]|115)

—[(3 x5 x 7 x 17 x 19 x 3119)/2/5% x 3119][11 10)
[F, —1)2 =113 x 5 x 7 x 11 x 17 x 19 x 3119)/2/2 x 5% x 3119]|11 — 11)

+[353(2 x 3 x 5 x 17 x 3119)/2/2 x 5° x 3119]|11 — 6)
32 x 41(2 x 3 x 5 x 13 x 3119)/2/2 x 5% x 3119]|11 — 1) —
H[3 x 47(5 x 17 x 19 x 3119)/2/2 x 5% x 3119]]119)

[2 x 43(5 x 7 x 3119)/2/5% x 3119]|114)
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@ = |abcdef))

= |abcdeaBydefP)

= [1°2°3°475°12P374°5"6/6). (31)
The state (31) is said to be nonsymmetry adapted and is
called the normal order state or a reference state.

Applying the operator ¢, = (1/5)"/P* in (18b) to the
reference state ¢, and noticing that the operator Cs,
induces a cyclic permutation of the bonds as
Cs, = {12345} = (12345)(1'2'3'4'5"), we get

¢L|SBR = ¢,14(Po
= (1/5"7)P"q,
= (1/5'?)|abcde; f)),
= (1/5")[|abcdef)) + plbedeaf)) + p’|cdeabf))
+ p’|deabef)) + p*leabedf))], (32)

where we use a semicolon to denote symmetrization
with respect to the horizontal bonds 1-5 and 1'-5'.

The states ¢, |spr = (1/5'?)|abcde; f)), is a basis
vector in the so-called Cs-symmetrized boson repre-
sentation. Notice that the bond indices are symmetrized
and hidden in |abcde; f)),. Instead of specifying how
many vibrational quanta are in each bond, we only need
to specify that there are a,b,c,d,e,f, o, B,y,68,¢, ¢
quanta distributed over the 12 bonds with cyclic
symmetry po. In analogy with the second quantization
formalism which makes the particle labels meaningless,
here the symmetry boson representation makes the
bond indices meaningless, resulting in great simplicity.
The basis vectors |abcde; f)) have the symmetry:

labcde; f)),, = plbcdea f))
= p’|cdeab; f))
= p’|deabc; f))
= p'leabed; f))

o
P
P
. (33)
Similarly, applying the operators ¢, = (1/5)'2P"B, in

(18b) and ¢, ;, ¢}, ; in (18a) to the reference state

¢, and noticing that B,, B; and p, interchange
the bond indices as B, = {15'}{24'}(33")(66),
By = {15}{36'}(22")(44") and B, = {24}{36}(11")(55') (see
Fig. 1), we obtain

. lser = S99 = (1/5'7)|e8y B $)), (34)
¢,3;,,;2|SBR = (bi,ﬁ(pO
= LP"B,[|abcdef)) + plbedeaf)) + 7 |cdeaby))
+ p°ldeabcf)) + p*leabedf))]
= LP![leppday)) + playgebs)) + 7 |bdpoce))
+ 7°lcegppda)) + p'ldagyep))]
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= [lefgda; y)), + playgeb; 8)),
+ PP Ibsgacs ), + 7 lceppd: ),
+ p'ldagye; B)),]
¢;1MZ|SBR = ‘f’;t,,z‘/)o
= %P“,é4[|abcdef)) + plbcdeaf)) + p*|cdeabf))
+ p'ldeabcf)) + p'leabedf))]
= 3 P![|adfbec)) + plBefead)) + p*|yafdpe))
+ 5*[8bfeya)) + 7*|ecfash))]
= {ladfbe; c)), + plBefea; d)),,
+ p'lyafdp; ), + p°|8bfey; a)),
+ p'lecfas; b)) 1.
From (32) and (34), we know that the irreducible basis

vectors in the SBR are readily obtained by adding the
suffix SBR to the basis ¢, ¢7,, ¢,,; and ¢} ; in (20d),

wo Fup

(21¢), (22¢) and (23d). For comparing the results with
the those in Chen & Ping (1997), we only list the prin-
cipal components in the following:
= [1/(12)1/2](¢(1)|SBR + ¢3|SBR + 51/2¢80|SBR
+ 5@ lser)»
‘I’E)F')O =3 (Bolssr — Holser — Poolser + Biolssr):
Yo — (1/2)(@yalser + Poalsmr). = £1,
Wi =3 (Bolsmr — Flswr + Polssr — Dlolsur).
W = (127 Goalser + Boalssr). A= E2,
‘IJ(zG)Z = (1/31/2)(¢;|SBR + ¢§2|SBR - ¢32|SBR)7
W = (1/32)(@lspr — Baalssr + Dhlsor)-

i
‘Ij(z "= (2/31/2)(C2+ﬁ¢g;2|SBR - C2—ﬁ¢gﬂ|SBR)9

i = =l,
W = [1/(12)21(5Y2 P lspr + 52D lser — Piolsr
- d’gO'SBR)v
W = (1727 lser + Poalser). = £1, £2.
(35)

Using the symmetry (33), it can be shown that ¢L|5BR,

i|smp ¢311|S.BR and @),;|spg are related to the corre-
sponding basis vectors ¢, 7, ¢>; and ¢} in (27), (29)
and (30) of Chen & Ping (1997) as

2 2
®lser = ¢

‘btwllSBR = [’29902,5-

¢L|SBR = ‘Piw
¢i,,1|SBR = /52,0*@2,,5, (36)
Owing to (36), (35) are identical with the corresponding
equations (45)-(46) in Chen & Ping (1997) except for
the difference of the phase factors. To be more specific,
the relations between the irreducible bases are
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vt = A,
FMO 0
\IJ t= FIMI 0>
FH
\IJO‘ W ( l)lLJrl |m 0>
W2 = G2, WO =eGy?, e = exp(—7i/5)
W = _erGl, WO = 2G5,
i = HY, = (-1 HY, (37)

where o = %1, 2, and the symbols Aﬁ on the right-
hand side are notations used in Chen & Ping (1997) for
the irreducible bases W Since only the principal
components are calculated in Chen & Ping (1997), the
difference in phase is irrelevant. From the above, it is
seen that once the projection operators are known it is
trivial to get the irreducible basis in SBR.

9. Discussion and summary

For multiplicity-free cases, the I D C5 SAF’s obtained in
this paper are identical with the tables given by Damhus
etal. (1984, p. 439) for j = 0-5, and are different to those
given by Butler (1981) in phase factors (owing to
different choices of coordinate axes). The SAF’s are all
real in this paper and Butler (1981), while the SAF’s in
McLellian (1961) are complex.

McLellian (1961) gives the SO; | I irreducible
matrices of the element C, i.e. our generator ,34 Cys.
Notice that McLellian used p, = exp[(27u’/5)i], and
his quantum number p' is equivalent to our —u. The
relationship between the SO, | I irreducible matrix in
McLellian (1961), denoted as D®'(R,), and our D™(R,)
is

DP(R,) = U'D?(R)U, (39)
where

U'={1 =1 —1}4,

uh={1 1 1},.,

o { }dlag (39)

U” = {l 1 -1 1 }diag7

=1 =1 1 1 1}g,-

The corresponding SAF’s, denoted by w;ﬁ”, are given by
Vi = ULV (40)

However, the 1//5*) differ from the McLellian SAF’s by
phase factors due to the different choice of the coordi-
nate axes.

Prandl et al. (1996) have calculated the SAF’s for the
identity irrep of the group I by a recursive method. The
SAF’s obtained by the recursive procedure are also not
orthogonal in the multiplicity label but they used the
Schmidt procedure to orthogonalize them. It is found
that, by rotating our coordinate system around the z axis
through 7/5, our results for /<30 (multiplicity-free
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cases) are different to those in Prandl et al. (1996) in
overall phase factors, while for / =30 the relation
between the two is

v, = w(A)'rh:—SO’

U =l =0 — g WPEEYN,
o = 0.041 587 724 606,

N =0.999 134 856 344,

where Y™ are our SAF’s in the rotated coordinate
system, while i, and v, are the basis vectors 30-1 and
30-2 in Prandl et al. (1996). It should be pointed out that
only the SAF’s for even [ are calculated by Prandl et al.
and their symmetry equation (4) applies only to
the SAF’s with even /. Besides, there is a misprint
in their Table 1: the factor 22 in coefficient
—22x3x(2x5x13x29x41 x47)V2 of L =28,
M = %20 should be 2, otherwise the normalization will
be 0.651203 434 3 instead of 1.

In summary, the algebraic expressions (24) for the
reduced projection operators and equation (29) for the
SAF’s in the group chain I D Cs are derived by the
double-induced technique in an ab initio way. The
algebraic expressions for the former are functions of
only the quantum numbers (A, i, 1), and those for the
latter are functions of only the quantum numbers
(I, A, w, m) with m serving as the multiplicity label. With
the algebraic expression for the SAF’s available, the
symmetries of the SAF’s are found, which are otherwise
hidden in the numerical tables.
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